Nouveaux Matériaux Légers pour Airframers

Début - Précédente - 12 - 13 - 14 - 15 - 16 - Suivante - Fin

Créer un nouveau sujet Répondre à ce sujet Ajouter ce sujet à mes sujets favoris

Auteur Message

Beochien
Membre

Avatar de Beochien

Inscrit le 13/02/2007
9 170 messages postés

# 24 juillet 2010 10:42
Bonjour !

Les Fuzzy fibers selon Goodrich ...
Pour les nacelles et sûrement d'autres applications, les bords d'attaque par exemple !
Un exemple desévolutions des fibres de carbone mixées au Nano-Matériaux !
pour la grèle, la conductivité et le dégivrage !
Les évolutions des CFRP ne font que commencer !

--------------------------- L'article AINonine -------------------------

http://www.ainonline.com/news/single-ne ... ich-25531/

Fuzzy fiber to lower cost of composites, says Goodrich

By: Stephen Pope
July 21, 2010
Aerospace Industry

Goodrich Corp. (Stand OE4) has begun collaborating with researchers at an Ohio university to produce a nanomaterial nicknamed “fuzzy fiber” that has metal-like conductive properties and can be formed into large composite structures for use in aerospace.

The University of Dayton Research Institute (UDRI) is collaborating with Goodrich and two other companies, Renegade Materials and Owens-Corning, to build a lab where researchers can produce the nanomaterial–known by the scientific name NAHF-X–in resin composite sheets.

URDI gets the credit for inventing NAFH-X. Now, Goodrich hopes to use the hybrid composite material in new-generation engine nacelles and will explore other applications, including aircraft structural health monitoring, wheels and brakes and electrical de-icing systems.

What intrigues engineers is NAFH-X’s ability to deliver structural, electrical and thermal properties in a single structure. An engine nacelle made from NAHF-X, for example, could withstand lightning and hail damage while also providing protection from ice buildup. Besides reducing weight and complexity, this would also provide a more efficient alternative to ice-removal systems that use hot-air ducts, Goodrich said.

The breakthrough that led to the creation of NAHF-X occurred when researchers determined how to control the growth of the nanotubes to create large, uniform structures with properties suitable for products like engine nacelles. So far, the UDRI research team has demonstrated it can produce the materials in continuous sheets that are 12 inches wide. The goal is to increase the size of the resin sheets to 60 inches wide.

“UDRI’s NAHF-X fuzzy fiber is a game-changer,” said Harry Arnold, vice president, enterprise technology, at Goodrich. “It has a real potential of bringing affordable capability to composite production.”

Goodrich has committed $1 million to the fuzzy-fiber program. Goodrich’s Aerostructures team in Chula Vista, California, and its Materials and Simulation Technical Center in Brecksville, Ohio, will be tasked with evaluating potential business opportunities for the material.

JPRS

_________________
JPRS
Voir le profil de l'auteur Envoyer un message privé à l'auteur

Beochien
Membre

Avatar de Beochien

Inscrit le 13/02/2007
9 170 messages postés

# 24 juillet 2010 11:36
Bonjour !

Bon, on l'a vu passer chez FG, pour ALCAN !

Le point sur les Aluminiums et leurs alliages !
Cette fois, ALCOA, qui eux aussi proposent des AlLi, qui peuvent apporter 3-14 % d'écos de poids !
Et ..; 1 A380 = 9 A320 pour la conso d'alu !

Long article de fond intéressant
A lire pour le week-end !

----------------- AINonline l'Article ---------------------

http://www.ainonline.com/news/single-ne ... tes-25431/


Aluminum remains relevant despite trend toward composites

By: Gregory Polek
July 20, 2010
Aerospace Industry

Notwithstanding the unprecedented scale of composites content in the Boeing 787 and Airbus A350XWB airliners, aluminum still reigns as the material of choice in most airliner fuselage applications. At least that’s the message Alcoa–the aluminum company–wants to send here in Farnborough, where scores of examples of flying machines made of the metals the company supplies grace the static display.

Of course, the use of carbon-fiber products doesn’t preclude the use of aluminum and various other more exotic metals in the same airplane. Even what many consider an all-composite fuselage in the 787 uses thousands of highly specialized and expensive metallic fasteners made by Alcoa. In fact, according to Bill Christopher, Alcoa executive vice president and group president of the company’s Engineered Products & Solutions division, the dollar value of Alcoa’s contribution to the 787 virtually equals that of the aluminum-bodied 767.

Unfortunately, delays to the 787 and the A380 along with pressures such as inventory de-stocking and a collapse in the regional and business aircraft markets resulted in less demand for Alcoa’s aerospace products last year, when sales fell from $4 billion in 2008 to “just north of $3 billion.” However, the company’s financial position looks better this year, said Christopher. “If you look at the de-stocking on the jet engine side, that’s behind us; we’ve seen a pickup in the MRO, the replacement side of the business,” he added. “I think that de-stocking through that whole supply chain is done.”

Thankfully, the underlying fundamentals of the large commercial aircraft business “held up very well” all along, said Christopher, and Alcoa remains bullish about its prospects for the next two to three years, as manufacturers proceed with planned build rate increases and the 787 and A380 programs “ramp up to run rates.” Still, he said, “it will be later this year, early next year before we start to see any significant activity back there again.”

Three years ago Alcoa had just finished adding sheet and plate capacity at its Global Rolled Products division mills in Davenport, Iowa; Kitts Green, UK; Fusina, Italy; and Belaya Kalitva, Russia. The additions accounted for some 50 percent capacity expansion. Today, not only Alcoa, but the entire industry faces an overcapacity situation, particularly on the plate side, [but] “less so on extrusions,” said Christopher. “[In terms of] fasteners and airfoils, there’s some excess capacity but not nearly to the same extent, and most of that is driven just by business jet and regional jet demand.”

About half of the company’s portfolio consists of its traditional aluminum structural businesses it started a century ago. The other half consists of its Howmet jet-engine investment castings unit and its Alcoa Fastening Systems (AFS) division.

Proprietary Technology
Although Christopher wouldn’t reveal what proportion of Alcoa Aerospace’s revenue now comes from proprietary products, the company clearly has moved away from commodity markets and into proprietary technology. In 2004, proprietary products accounted for 12 percent of Alcoa’s aerospace revenue; in 2007 that share rose to more than 20 percent.

“If you ask what holds together a portfolio of jet engine parts, fastening systems and sheet, plate and extrusions for aluminum structures, it is technology,” said Christopher. “We look at each individual segment, we want highly complex applications where, in fact, we expect mission requirements to increase demands on the product, which allows us to develop technologies that solve customer problems.”

Christopher explained that the economic rationale for replacing equipment lies more firmly today with the cost savings that come with technology improvements than with direct acquisition cost savings the OEMs sought for earlier projects. The resulting demand for more sophisticated materials plays directly to Alcoa’s strengths. “Overall, it is clearly what we drive for, whether it’s proprietary, highly differentiated, a combination of technology or know-how or special dimensional characteristics,” he said. “And that really represents the core of all three segments of what we have.

“For the next five or six years we’re going to go through a renaissance in the industry, where you have all new platforms being run out,” Christopher predicted. “By 2020 you’re going to be talking about everything from twin-aisles to your super jumbo jets all being brand-new platforms.”

The next “battle ground,” according to Christopher, will involve the single-aisle segment, where Alcoa believes its metallic products will prove superior
to composites. Since Boeing launched the 787, Alcoa has developed three generations of aluminum lithium alloys, he said. Stronger than traditional aluminum, aluminum-lithium allows manufacturers to use thinner and, hence, lighter fuselage skins.

Incorporating Hybrids
Another area in which Alcoa believes it can compete with composites on weight involves so-called selective reinforcement, a concept that centers on strengthening certain fuselage points with hybrid material. “We’re now starting to look at single-aisle applications and saying we think that there’s anywhere between a 3-percent and 14-percent improvement on weight that can be delivered [with selective reinforcement],” said Christopher.

Whether or not aluminum- lithium or structural reinforcement technologies find their way onto new narrowbodies might well depend on the partnerships Alcoa manages to forge with OEMs. In fact, the company last year signed a strategic partnership agreement with Comac to help the Chinese company decide on what materials to use on the C919–the new 170- to 190-seat narrowbody scheduled for market introduction in 2016. “We have a full team of people working with their design people on really putting forth our best technologies in the design of that aircraft, from both a fastener perspective and an aluminum structures perspective,” said Christopher.

Of course, Alcoa has shown intense interest in the narrowbody strategies of Boeing and Airbus as well, along with the fortunes of the A380 and 747-8. The A380 alone consumes nine times the metal and alloys required by today’s 737 and A320. The largest supplier to the A380 program, Alcoa provides forgings, extrusions, sheet, plate and castings for the superjumbo’s wing and fuselage skins, along with stringers, frames, spars, gear ribs, engine and pylon supports, seat tracks and floor beams.

The AFS division has developed multi-material lock bolts for the assembly of the big jet’s wing box and new-generation blind bolts tailored for the program’s robotic assembly techniques. Each A380 uses about one million Alcoa fasteners.

“When you look at the prospects right now, the 747-8 and A380 [are] both metallic aircraft. They’re not going to change for 25 years,” said Christopher. “You’ve got the single aisles…obviously their lifespan is going to be longer than what everybody expected and we think we have incredibly competitive alternatives for them– especially given a single-aisle mission–that would provide them weight advantage and give them a lot more experience and predictability in both their design and their launch costs.”

Alcoa (Hall 1 Stand A9) can effect further weight savings by replacing titanium with advanced aluminum alloys. “Our fundamental belief is if you had a choice between aluminum and titanium, obviously you’re going to pick aluminum because it machines faster and it’s lighter,” said Christopher. “But then you’re trading off, in certain cases, strength” as well as titanium’s resistance to expansion at high temperatures. “The coefficient of thermal expansion between aluminum and composites unfortunately is very different,” he noted. “So there are places you just can’t put them together because, as the plane heats up or cools off, you’re going to end up with structural issues. So that’s part of the barrier that we face there.”

JPRS

(Dernière édition le 24 juillet 2010 12:32)


_________________
JPRS
Voir le profil de l'auteur Envoyer un message privé à l'auteur

didier
Membre

Avatar de didier

Inscrit le 07/03/2008
404 messages postés

# 3 août 2010 16:41
Qu'en est il du caractère recyclable (ou pas justement) de tous ces matériaux à base de fibres diverses ? Le métal au moins lui est un peu plus facilement recyclable.
Ne va t-on pas se trouver, à terme, avec des carcasses dont ne nous ne pourrons rien faire, à part, peut-être les brûler sans rien récupérer d'autre qu'un peu plus de pollution ?
Voir le profil de l'auteur Envoyer un message privé à l'auteur

check!
Anonyme

Avatar de check!

Inscrit le 10/02/2010
763 messages postés

# 3 août 2010 16:43
Bonjour Didider,

Chez Boeing avec le B787 Dreamliner ils ont ventés des réductions de polluants à travers les procédés de fabrications pour le CFRP par rapport au métal / alu.

En ce qui concerne le recyclage personne n'a put apporter de réponse(s), celà semble vrai ...

merci.

(Dernière édition le 3 août 2010 16:47)

Voir le profil de l'auteur Envoyer un message privé à l'auteur

Beochien
Membre

Avatar de Beochien

Inscrit le 13/02/2007
9 170 messages postés

# 4 septembre 2010 11:45
Bonjour ! La techno du matin !

Lire les liens pour ceux que cela intéresse !

Tout savoir, sur les usinages et détourages des pièces et panneaux de CFRP ! Un petit point après avoir passé le post sur les immenses panneaux (30x6m) fabriqués à stade , et le commentaire sur les water-jet nécessaires !
Bien, pour usiner ou détourer des CRFP, il existe 3 méthodes … au moins !
La coupe mécanique, aussi vieille que le fiber-glass, grande consommatrice d'outils carbure et grande génératrice de poussières toxiques !
Le faisceau laser de puissance, lequel génère beaucoup de chaleur, au point d'impact, chaleur pouvant affecter les caractéristiques du métal, et brûler (Dégénérer) les résines !
Reste le water - Jet, un hybride du kärcher et de la sableuse, avec quand même 4-6000 bars de pression, et un abrasif ultra fin dans le liquide ! Efficacité garantie, presque sans échauffement, tuyères diamant et autres petits bijoux technos omniprésents !

N'essayez surtout pas sur votre voiture, ni pour dépoussiérer votre compagne !

http://www.compositesworld.com/articles ... composites
http://en.wikipedia.org/wiki/Water_jet_cutter
http://www.mmsonline.com/articles/machining-at-mach-3
http://www.mmsonline.com/articles/drill ... -materials
http://www.wardjet.com/
http://www.flowwaterjet.com/en/waterjet ... stems.aspx
http://www.flowwaterjet.com/en/waterjet ... pumps.aspx
http://www.iwmwaterjet.com/
http://www.iwmwaterjet.com/download_video.html
http://www.jetedge.com/content.cfm?fuse ... plications
http://www.youtube.com/watch?v=szkUpaO3R0I
http://www.youtube.com/watch?v=DZm40S4I ... re=related

Et un laser qui n'a pas dit son dernier mot !
http://www.innovations-report.com/html/ ... 49812.html

Bonne lecture ! JPRS

_________________
JPRS
Voir le profil de l'auteur Envoyer un message privé à l'auteur

Beochien
Membre

Avatar de Beochien

Inscrit le 13/02/2007
9 170 messages postés

# 4 septembre 2010 11:58
Bonjour !
J'ouvre un lien concernant le A350 !

http://www.mmsonline.com/articles/machining-at-mach-3

Article From: Modern Machine Shop, Peter Zelinski, Senior Editor

Posted on: 2/5/2009

The hard, solid cutting edge of a conventional end mill poses real dangers to the part whenever a tool such as this is used to cut carbon fiber reinforced plastic (CFRP). The impact and mechanical stresses can produce separation of the layers of material or pull-out of the carbon fibers. That is why, instead of tools with edges, shops often use abrasive milling tools to machine CFRP—tools that look like they are part grinding wheel and part end mill. High spindle speeds give tools such as these an efficient abrasive machining effect.

Yet there is another step beyond this. There is another option that achieves abrasive machining at even faster speeds. While an abrasive milling tool in a fast spindle might reach a cutting speed equivalent to about 50 miles per hour, an abrasive waterjet machine delivers the abrasive across the workpiece at a speed of about Mach 3. The difference is significant to Airbus, among others.

In order to develop lighter, more efficient and more durable planes, Airbus is increasingly applying engineered composite material to aircraft designs. The airframe of the new A350 XWB (“Xtra Wide Body”) aircraft is more than 50 percent composite materials by weight. CFRP components include the wings, fuselage, empennage, spars and keel beam—all of which will be machined using abrasive waterjet. The aircraft maker recently awarded Flow International a $30 million contract to build multi-axis abrasive waterjet machine tools at its Indiana facility for use in aircraft production plants throughout Europe.

Jose-Luis Morazo-Perez is head of A350 manufacturing engineering automation for Airbus, based in Hamburg, Germany. He says the company’s production facilities often use CNC routers and other rotary-tool machines to machine composites. Such machines were considered for this application as well. However, abrasive waterjet offered a clear economic advantage in the A350 XWB application. The abrasive and other consumables cost less than the cutting tools and other comparable consumables that would be needed to mill the parts. The cost of machine time was also less, because the faster cutting means the part spends less time on the machine.

“This was the best economical approach considering both recurring and non-recurring costs,” Mr. Morazo-Perez says.

He adds that further savings are likely to come from eliminating a costly step. Parts machined on a rotary-tool machine typically require deburring, even if the parts are cut with abrasive. But with waterjet, the cutting action is much faster and more thorough.

“Our expectation is that we could eventually avoid the deburring operation,” he says.

In other words, instead of achieving merely acceptable cutting that avoids the worst dangers such as delamination, the company sees hope for machined edges that are clean enough for the composite parts to be considered finished as soon as the waterjet cutting is done.

Waterjet In Action

Mark Saberton, chief engineer for Flow International, says these advantages that Airbus cites—faster cutting and avoiding damage to the workpiece—are among the main benefits aircraft manufacturers seek through machining composites with waterjet. Other benefits include:

• No dust. Fine dust from machining composites can infiltrate controls and other electronic equipment in the shop. It also makes the shop grimy and unappealing. With waterjet, this dust is contained and controlled. For the most part, the dust is carried away with the water, from which it can later be removed.

• No heat-affected zone. Delamination and fiber pullout are not the only dangers of mechanical cutting. Another is heat, which might melt the matrix of CFRP. But waterjet is inherently a cool process. Heat generation is slight, and the water transports the heat away.

• No rigid clamping. An unsupported edge of a CFRP workpiece is prone to vibrate during milling. For this reason, machining of composite structures on routers or similar machines often involves elaborate tooling designed to carefully and rigidly clamp the work at every trimmed edge. Vacuum fixturing built to the precise contours of the part is common. But with abrasive waterjet, the force of cutting is slight. The force also pushes down against the support beneath the part. Therefore, while programmable workholding is sometimes used (see below), rigid custom tooling is not required.

Aircraft Equipment

That “programmable workholding” is one of various features Airbus specified to allow its waterjet machines to be adapted to the particular needs of complex aircraft parts. Work is supported atop a flexible header system consisting of an array of effectors that resembles a bed of nails. Each effector’s vertical position is set independently, so the overall array can follow the contours of the part. Changing from one part number’s positions to the programmed effector positions for a different part takes only about 2 minutes, Mr. Saberton says. This compares very well to the hours that might be required to move one custom fixture off the machine and replace it with another hard fixture. Mr. Morazo-Perez says Airbus initially questioned this approach to workholding—worrying in particular whether the flexible tooling would stand up to the water over time. The company became convinced after visiting shops using similar programmable workholding on waterjet machines in the U.S.

Other machine features particular to aircraft abrasive waterjet machining include:

• Side-fire nozzles. Aircraft skins can include small ribs and stringers that impede access. The machine’s ability to switch to a nozzle that redirects the jet to the side can be useful for cutting within these tight spaces.

• C-catcher. The contours of aircraft structures can double back upon themselves, meaning the jet of water exiting the cut might hit some other surface of the part. To prevent this, a C-shaped catcher (see photo) can intercept the exit side of the jet. A consumable inside of this device absorbs the energy of the jet so the water can be captured and reclaimed.

• Rotary spindle. As Airbus indicated, rotary-tool machining remains useful in many composites applications. In fact, certain features must be machined in this way. While waterjet can machine a hole, for example, it can’t machine a countersink. Therefore, some abrasive waterjet machines incorporate rotary spindles for such needs as this. The rotary spindle is also useful for marking tools.

Mr. Saberton says one other, even more significant advantage of having such a spindle available is that it allows the machine to use a probe. This can permit further consolidation of steps, he says—allowing the waterjet machine itself to inspect the part before it leaves the machine.

JPRS

_________________
JPRS
Voir le profil de l'auteur Envoyer un message privé à l'auteur

okhly
Membre

Avatar de okhly

Inscrit le 11/05/2008
1 401 messages postés

# 4 septembre 2010 13:51
"Reste le water - Jet, un hybride du kärcher et de la sableuse, avec quand même 4-6000 bars de pression, et un abrasif ultra fin dans le liquide ! Efficacité garantie, presque sans échauffement, tuyères diamant et autres petits bijoux technos omniprésents ."
anticonceptionnel en sorte ! pour les bars ...ça devient difficile .

_________________
Voir le profil de l'auteur Envoyer un message privé à l'auteur

Beochien
Membre

Avatar de Beochien

Inscrit le 13/02/2007
9 170 messages postés

# 18 septembre 2010 15:50
Bonjour !

Un petit tour dans les alliages de magnésium, utilisés jusqu'aux années 50' War oblige ... et abandonnés depuis, et remis en lice, par divers programmes Européens !
Gros défaut, inflammable vers les 700°, mais seulement quand ils fondent ... on est déjà cuit, en gros !
Nouveau, les protections anti-corrosion, et un peu "Fire, ou plutôt Melting retardantes"
Et toujours, 20-30% de gain de poids, Vs l'Alu, et des caractéristiques mécaniques très intéressantes, dans des gammes de T° normales, bien sûr !
Soudable, formable,et 4 fois plus léger que l'acier à résistance égale !

Une alternative intéressante aux composites ... qui progressent très vite ! Pas sûr !

Peut être attendre les coûts et taxes de recyclage pour les avions "Composite" L' Arizona en voudra t'il toujours, faudra voir ??

Juste à lire :
http://www.materials.manchester.ac.uk/p ... per_07.pdf
Et ...
http://www.aviationweek.com/aw/blogs/av ... d=blogDest
Et ...
http://www.gov-online.go.jp/pdf/hlj_ar/ ... /28-29.pdf
Et ...
http://www.luxfer.com/news-article.asp?id=113
Et ...
http://www.magnesium-technologies.com/v ... DUSTRY.pdf
Et ...
http://www.magnesium-technologies.com/v ... DUSTRY.pdf
Et ...
http://www.palbam.co.il/magforming/magf ... dustry.pdf
Bonne lecture !

JPRS

(Dernière édition le 18 septembre 2010 16:22)


_________________
JPRS
Voir le profil de l'auteur Envoyer un message privé à l'auteur

gerfaut
Membre

Inscrit le 27/03/2008
2 626 messages postés

# 14 octobre 2010 23:07
Une autre des raisons qui peuvent pousser les constructeurs vers le composite à moyen terme ?

Le prix des métaux ? Comme l' a calculé R. Bonaterre dans cet article plutôt centré sur l' automobile, depuis janvier 2009 le prix des matières minérales importées a été multiplié par 2,6 ! Bon pour les avions, les pièces en composites des avions nouveaux qui vont arriver ne doivent pas être données non plus.

Mais il faudrait pouvoir comparer une fois qu' on aura passé le cap de la production en série des nouveaux modèles, une fois qu' on saura faire, disons dans quelques années. Et si le prix des métaux utilisés continue de monter bien sûr. C' est une donnée que les industriels vont sans doute devoir intégrer dans un avenir proche avant de construire une pièce. Ils vont devoir comparer les prix. Ce sera alors bien d' avoir le choix.

http://www.leblogenergie.com/2010/10/de ... l#comments

Le lien à la fin de l' article sur la société Soficar qui produit des fibres de carbone pour l' aéronautique est aussi interessant à lire, les affaires semblent reprendre pour cette société qui a connu le chômage technique après avoir fait le choix d' une production plus importante juste avant la crise.

Sur l' envolée récente des cours des métaux

http://www.leconomiste.com/article.html?a=103317

Et l' évolution du cours de l' aluminium, disons qu' on rattrape l' avant crise

http://www.zonebourse.com/LME-ALUMINIUM ... e=statique

(Dernière édition le 14 octobre 2010 23:22)


_________________
"Je prends tout doucement les hommes comme ils sont, j' accoutume mon âme à souffrir ce qu' ils font" (Le Misanthrope, Molière)
Voir le profil de l'auteur Envoyer un message privé à l'auteur

Beochien
Membre

Avatar de Beochien

Inscrit le 13/02/2007
9 170 messages postés

# 15 octobre 2010 00:14
Merci Gerfaut !

Ce que j'aimerais connaître, c'est le cours des Al-Li Aviation dernier modèle de chez Alcan ...
Car aluminium, plus nuance d'alliage exclusive ... ça doit atteindre des sommets impressionnants !
Pas étonnant qu'ils récupèrent les copeaux, comme des orpailleurs !

JPRS

_________________
JPRS
Voir le profil de l'auteur Envoyer un message privé à l'auteur

gerfaut
Membre

Inscrit le 27/03/2008
2 626 messages postés

# 15 octobre 2010 09:43
Salut Beochien,

Oui, vous avez raison, pour le prix de ces alliages al-li dernier modèle je pense que pour le vendre Alcan a commencé raisonnablement niveau prix, il s' agit de passer la rampe, mais à l' avenir c' est eux qui décideront du prix, ils sont les seuls je crois à en produire avec ces qualités de légèreté.

_________________
"Je prends tout doucement les hommes comme ils sont, j' accoutume mon âme à souffrir ce qu' ils font" (Le Misanthrope, Molière)
Voir le profil de l'auteur Envoyer un message privé à l'auteur

Beochien
Membre

Avatar de Beochien

Inscrit le 13/02/2007
9 170 messages postés

# 9 avril 2011 11:21
Bonjour !

Jon Ostrower, de FlightGlobal est allé se promener à Denver !
Un paquet de conférences futuristes NASA en tête !

Une belle boite à outils pour Boeing, pour les idées concernant son futur 797 !
Voire s'ils prendront les risques (Après le 787) pour assurer une marge de 10 points ou plus, pour contrer efficacement les 320 NEO ! Et pour quand !
Un avenir un peu fumeux pour l'instant... au vu du rythme des progrès, assez faibles, réalisés depuis 10 ans (Sauf pour les moteurs)
Surtout noté que les CFRP conducteurs ne sont pas prévus dans le court terme, et c'est un des vrais problèmes actuels !
Les nanotubes, bien, ça reste pour l'instant dans le rôle des additifs coûteux !
C'est encore très cher !

Bon, en vrac ...

Le programme :
http://www.aiaa.org/content.cfm?pageid= ... ingid=2412

L'article de JO :
http://www.flightglobal.com/blogs/flightblogger/

Des Slides, intéressantes, et plutôt ardues à suivre et à comprendre.
http://www.aiaa.org/pdf/industry/presen ... n_2011.pdf

Bon Shopping, après le tri, c'est difficile d'identifier ce qu'une seule génération pourra voir !

(Dernière édition le 9 avril 2011 14:06)


_________________
JPRS
Voir le profil de l'auteur Envoyer un message privé à l'auteur

lequebecois
Membre

Avatar de lequebecois

Inscrit le 11/02/2007
8 926 messages postés

# 10 juin 2011 03:29
Bonjour,

Alcoa dévoile l'aluminium-lithium de 3e génération :

Selon Alcoa :

- jusqu'à 10% plus léger que le composite
- jusqu'à 30% moins coûteux à produire que le composite

http://www.alcoa.com/global/en/news/new ... sYear=2011

_________________
Le bonheur est une pause entre deux emmerdes !

Adepte de la discutaille du coin du comptoir du café de la gare
Voir le profil de l'auteur Envoyer un message privé à l'auteur

Beochien
Membre

Avatar de Beochien

Inscrit le 13/02/2007
9 170 messages postés

# 10 juin 2011 08:06
Bien vu Cousin !
Un grand merci !

Magnifiquesprogrés !

Juste voir quand un projet constructeur sera lancé pour valider tout ça !

Je l'ouvre pour garder la trace !

http://www.alcoa.com/global/en/news/new ... sYear=2011

---------------------------------------------

Alcoa Develops Breakthrough Technologies That Lower Cost, Weight and Production Risk of New Airplanes

New Alcoa Alloys and Advanced Structural Technologies:

- Provide Up to 10% in weight savings over composite-intensive planes;

- Lower the cost to manufacture, operate and repair planes by up to 30% vs. composite- intensive planes… at significantly lower production risk;

- Allow for a 12% increase in fuel efficiency, on top of the 15% from new engines;

- Deliver passenger comfort features equivalent to composite-intensive planes, such as higher cabin pressure, large windows and higher humidity; and

- Market research shows 3 out of 4 in industry would recommend aluminum for future primary aluminum structures.

NEW YORK & PITTSBURGH--(BUSINESS WIRE)--Alcoa (NYSE:AA) today announced it has developed a completely new set of aluminum-based solutions for the aerospace market that will allow airframers to build dramatically lighter and lower-cost short-range airplanes at significantly lower production risk than composite-intensive planes.

The new solutions, which combine new alloys and advanced structural technologies, use Alcoa sheet, plate, forgings and hard alloy extrusion products across aircraft structures, including airplane wings and fuselage elements. The new technologies:

- lower the weight of the plane by up to 10% vs. composite-intensive planes;

- lower the cost to manufacture, operate and repair planes by up to 30% vs. composite-intensive planes, and at significantly lower production risk;

- allow for a 12% increase in fuel efficiency, on top of the 15% from new engines; and

- deliver passenger comfort features equivalent to composite-intensive planes, such as higher cabin pressure, large windows and higher humidity.

“The decisions made in the past decade to build the first composite-intensive aircraft were a huge wake-up call for us,” said Mick Wallis, President of Alcoa North American Rolled Products who is responsible for Alcoa’s aerospace sheet and plate products. “In hindsight it was the right decision for the time – when advanced aluminum solutions were not as developed -- but our technology solutions have made quantum leaps since those decisions.

“And it’s important to keep in mind that the mission requirements of short-range airplanes are dramatically different than those of longer-range planes,” added Wallis. “With these new solutions we are confident we can add value to airframers in their short-range offerings, just as we have proven with longer-range planes…and the market research we’ve conducted says we are not alone in that belief.”

The combination of Alcoa solutions results in short range aircraft that meet or exceed airframer targets for corrosion resistance, aerodynamic drag, maintenance requirements, and fuel efficiency along with improved buy-to-fly ratios. In fact, the improvements developed by Alcoa for a new short-range aircraft can generate up to a 12% increase in fuel efficiency on top of the 15% improvement from new engines.

Included in the new solutions portfolio are advanced alloys and third-generation aluminum lithium alloys that result in up to 7% lower density in major structural applications along with critically important corrosion resistance. Alcoa’s most-recent aluminum lithium alloys were selected for large commercial aircraft plate applications and are being used on planes about to enter the marketplace. These newest aluminum lithium alloys provide additional enhanced performance.

New improvements in aerodynamics for skin sheet developed by Alcoa reduce skin friction drag by up to 6%. In addition, new advanced structural technologies using forged, extruded, and rolled products enable increased wing aspect ratio for improved fuel savings, provide up to 10 times the damage tolerance vs. conventional alloys, and allow increased cabin pressurization for enhanced passenger comfort, on par with all new aircraft structures in development today.

“As we began work on these new solutions, we wanted to ensure they contribute to all four phases of a plane’s life cycle,” said Eric Roegner, President of Alcoa Forgings and Extrusions. “In the first phase, when it is built, we will lower manufacturing and assembly costs and reduce program risks for the airframer through established high volume supply chains and reduced investment requirements via existing infrastructure…and aircraft operators want the reduced risk associated with timely delivery.

“In the second phase, when customers fly the plane, the lower weight and aerodynamic technologies will increase fuel efficiency by up to 12% on their own and up to 27% when new engines are factored in,” said Roegner.

_________________
JPRS
Voir le profil de l'auteur Envoyer un message privé à l'auteur

gerfaut
Membre

Inscrit le 27/03/2008
2 626 messages postés

# 10 juin 2011 15:45
Merci Lequebecois et Beochien !

Donc du côté des nouveaux alliages AL-Li ce sera Constellium vs Alcoa. Les chiffres d' Alcoa sont avancés, ceux de Constellium, c' est un peu plus flou, le gain de poids sera jusqu' à 25 %, on ne sait pas par rapport à quoi. Les prix, on ne sait pas non plus. Mais quand même, 20 % du CSeries de Bombardier est concerné, l' A350 aussi. Interessant de suivre cette voie et cette concurrence.

http://www.constellium.com/business-sol ... ds/airware

_________________
"Je prends tout doucement les hommes comme ils sont, j' accoutume mon âme à souffrir ce qu' ils font" (Le Misanthrope, Molière)
Voir le profil de l'auteur Envoyer un message privé à l'auteur
Début - Précédente - 12 - 13 - 14 - 15 - 16 - Suivante - Fin

Créer un nouveau sujet Répondre à ce sujet Ajouter ce sujet à mes sujets favoris

Ajouter une réponse

Vous devez être inscrit et connecté sur AeroWeb pour pouvoir ajouter une réponse à ce sujet !